DURATION OF ACHIEVEMENT OF GARLIC BERRIES UNDER THE INFLUENCE OF ABIOTIC FACTORS
DOI:
https://doi.org/10.31395/2310-0478-2021-2-73-77Keywords:
abiotic factors, strawberry, ripening, interconnectionAbstract
The quality of garden wild strawberry berries determines their suitability for consumption in a fresh form, storage and preservation, and their formation takes place at the time of reaching the consumer ripening.The aim of the work was to determine the regularity of the time for reaching the consumer ripening of garden wild strawberries under the influence of abiotic factors.The research of the period of garden wild strawberry berries ripening (May, June) required the following parameters: the sum of effective temperatures above 5 °С; above 10 °С; amount of active temperatures; amount of precipitation. The multiple correlations between selected features with the allocation of coefficients reliable at the trust level <0,05 have been calculated, and correlation groups have been based on it.It has been found that Honey variety wild strawberry start ripening accumulating the sum of effective temperatures above 5 °C 486- 651; above 10 °С -214 - 347 and the sum of active temperatures - 606- 893 °С. To ripe, Ducat and Polka varieties wild strawberry require respectively: 590-800, 268-442 and 809 -1093 °C.The indicator is the average decade temperature of the air preceding the onset of the fruit ripening and is closely related to the sum of ∑еф>5 (r = 0,64), with the sum of ∑еф>10 (r =0,61). No correlation between the number of days before Honey variety wild strawberry ripening start and the abiotic dependency has been established. The number of days before Ducat variety wild strawberry ripening start depends on the average temperature in the last decade before ripening and the sum of ∑еф>5 (r = 0,4). Polka variety wild strawberry showed the following relationship: with an average decade temperature (r = 0,44), the sum of ∑еф>5 (r = 0,52), the sum of ∑еф>10 (r = 0,37) and active temperatures (r = 0,4).Thus, the duration of reaching the consumer ripening of wild strawberry berries depends strongly on genetic preconditions, however, in middle and late pomological varieties, this process occurs under the influence of temperature indices.
References
Bouzayen M., Latché A., Nath P., Pech J.C. Mechanism of fruit ripening. Plant developmental biology- Biotechnological perspectives. Springer Berlin Heidelberg. 2010. Р. 319–339. http://dx.doi.org/10.1007/978-3-642- 02301-9
Nunes M. C. N., Brecht J. K., Morais A. M., Sargent S. A. Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. Journal of the Science of Food and Agriculture. 2006. Vol. 86. No. 2. Р. 180–190. https://doi. org/10.1002/jsfa.2314
Han Y., Dang R., Li J., Jiang J., Zhang N., Jia M., Jia W. Sucrose nonfermenting1-related protein kinase, an ortholog of open stomata, is a negative regulator of strawberry fruit development and ripening. Plant physiology. 2015. №167. Р. 915–930. https://doi.org/10.1104/pp.114.251314
Ferreyra R. M., Viña S. Z., Mugridge A., Chaves A. R. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Scientia Horticulturae. 2007. 112(1), 27–32. https://doi.org/10.1016/j. scienta.2006.12.001
Diamanti J., Capocasa F., Mezzetti B., Tulipani S., Battino M. The interaction of plant genotype and temperature conditions at ripening stage affects strawberry nutritional quality. In Workshop on Berry Production in Changing Climate Conditions and Cultivation Systems. COST-Action 863: Euroberry Research: from 838. 2008. Р. 183–186. https://doi.org/10.17660/ActaHortic.2009.838.30
Pathak T. B., Dara S. K., Biscaro A. Evaluating correlations and development of meteorology based yield forecasting model for strawberry. Advances in Meteorology. 2016. https://doi.org/10.1155/2016/9525204
Li H., Li T., Gordon R. J., Asiedu S. K., Hu K. Strawberry plant fruiting effi ciency and its correlation with solar irradiance, temperature and refl ectance water index variation. Environmental and Experimental Botany. 2010. 68(2), Р. 165–174. https://doi.org/10.1016/j. envexpbot.2009.12.001
Palencia P., Martínez F., Medina J. J., Vázquez E., Flores F., López-Medina J. Eff ects of climate change on strawberry production. In Workshop on Berry Production in Changing Climate Conditions and Cultivation Systems. COST-Action 863: Euroberry Research: from 838. 2008. P. 51–54. https://doi.org/10.17660/ActaHortic.2009.838.6
Palencia P., Martínez F., Medina J. J., López-Medina J. Strawberry yield efficiency and its correlation with temperature and solar radiation. Horticultura Brasileira. 2013. 31, P. 93-99. https://doi.org/10.1590/S0102- 05362013000100015
Терентьев П.В., Ростова Н.С. Практикум по биометрии. Учебное пособие. Л.: Изд-во ЛГУ. 1977. 152 с
Ростова Н.С. Корреляционный и многомерный анализ: применение в популяционных исследованиях. Современное состояние и пути развития популяционной биологии. Матер. Х Всероссийского популяционного семинара. 2008. С. 51–56.
Красотина Т.С., Хапова С.А. Биохимическая оценка перспективных сортов земляники садовой в Ярославской области. Вестн. АПК Верхневолжья. 2009. № 1. С. 11–14.